
Grappa is a modern take on software distributed shared memory, tailored to 
exploit parallelism inherent in data-intensive applications to overcome their poor 
locality and input-dependent load distribution. 

Grappa differs from traditional DSMs in three ways:

• Instead of minimizing per-operation latency for performance, Grappa 
tolerates latency with concurrency (latency-sensitive apps need not apply!)

• Grappa moves computation to data instead of caching data at computation

• Grappa operates at byte granularity rather than page granularity

Latency tolerance has been applied successfully in hardware for nanosecond 
latencies (e.g., superscalar processors and GPUs). This project explores the 
application of this idea at distributed system scales with millisecond latencies.
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31 nodes on PageRank.
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(c) Scaling PageRank: strong scaling on Twitter and
Friendster, weak scaling on synthetic graphs.

Figure 9: Performance characterization of Grappa’s GraphLab API. (a) shows time to converge (same number of
iterations) normalized to Grappa, on the Twitter and Friendster datasets. (b) shows communication metrics for the
PageRank data points. (c) shows scaling results for PageRank out to 128 nodes – Friendster and Twitter measure strong
scaling, and weak scaling is measured on synthetic power-law graphs scaled proportionally with nodes.

(30-80 kB) most of the network stack overhead (MPI or
TCP) is amortized for both systems.

Figure 10 demonstrates the connection between concur-
rency and aggregation over time while executing PageR-
ank. We can clearly see that each iteration, the number of
concurrent tasks spikes as scatter delegates are performed
on outgoing edges, which leads to a corresponding spike
in bandwidth due to aggregating the many concurrent
messages. At these points, Grappa achieves roughly 1.1
GB/s per node, which is 47% of peak bisection bandwidth
for large packets discussed in §3.3.1, or 61% of the band-
width for 80 kB messages, the average aggregated size.
This discrepancy is due to not being able to aggregate
packets as fast as the network can send them, but is still
significantly better than unaggregated bandwidth.

Figure 9c(left) shows strong scaling results on both
datasets. As we can see, scaling is poor beyond 32 nodes
for both platforms, due to the relatively small size of the
graphs – there is not enough parallelism for either system
to scale on this hardware. To explore how Grappa fares
on larger graphs, we show results of a weak scaling exper-
iment in Figure 9c(right). This experiment runs PageR-
ank on synthetic graphs generated using Graph500’s Kro-
necker generator, scaling the graph size with the number
of nodes, from 200M vertices, 4B edges, up to 2.1B ver-
tices, 34B edges. Runtime is normalized to show distance
from ideal scaling (horizontal line), showing that scaling
deteriorates less than 30% at 128 nodes.

4.2 Relational queries on Grappa
We used Grappa to build a distributed backend to Raco, a
relational algebra compiler and optimization framework
[53]. Raco supports a variety of relational query language
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Figure 10: Grappa PageRank execution over time on 32
nodes. The top shows the total number of concurrent tasks
(including delegate operations), over the 85 iterations,
peaks decreasing as fewer vertices are being updated.
The bottom shows message bandwidth per node, which
correlates directly with the concurrency at each time step,
compared against the peak bandwidth, and the bandwidth
for the given message size.

frontends, including SQL, Datalog, and an imperative
language, MyriaL. It includes an extensible relational
algebra optimizer and various intermediate query plan
representations.

We compare performance of our system to that of
Shark, a fast implementation of Hive (SQL-like), built
upon Spark. We chose this comparison point because
Shark is optimized for in-memory execution and performs
competitively with parallel databases [65].

Our particular approach for the Grappa backend to
Raco is source-to-source translation. We generate
foralls for each pipeline in the physical query plan (ex-
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GraphLab-like API
~60 lines of code, implementing:
- Synchronous engine with delta caching
- Random graph partition with no 

replication

Benchmarks run on 31 nodes using 1.8B 
edge Friendster social network graph 
and 1.4B edge Twitter follower dataset, 
compared with GraphLab using two 
partitioning strategies

In-memory MapReduce
~150 lines of code, implemented with 
forall loop over inputs followed by 
forall over keys

K-Means computation with 64 nodes 
on SeaFlow flow cytometry dataset 
with two different k values, compared 
with Spark using MEMORY_ONLY 
fault tolerance  

Backend for Raco 
relational query compiler
~700 lines of code, translating physical 
query plan into C++11 code using 
Grappa forall loops

SP2Bench benchmark run on 16 nodes, 
compared with Shark distributed query 
engine

Three prototype data analytics tools

Experiments run at Pacific Northwest National Laboratory on PAL cluster 
 (1.9GHz AMD Interlagos processors, Mellanox ConnectX-2 InfiniBand network)
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(b) Performance breakdown of speedup of GRAPPA over Shark on Q2.

Figure 9: Relational query performance.
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Figure 10: Data parallel experiments using k-means on a
8.9GB Seaflow dataset.

into a local hash table, using GRAPPA’s partition-awareness.
The global-view model of GRAPPA allows iterations to be im-
plemented by the application programmer with a while loop.

4.3.1. Performance We pick k-means clustering as a test
workload; it exercises all-to-all communication and iteration.
To provide a reference point, we compare the performance to
the SparkKMeans implementation for Spark. Both versions
use the same algorithm: map the points, reduce the cluster
means, and broadcast local means. The Spark code caches the
input points in memory and does not persist partitions. Cur-
rently, our implementation of MapReduce is not fault-tolerant.
To ensure the comparison is fair, we made sure Spark did
not use fault-tolerance features: we used MEMORY_ONLY
storage level for RDDs, which does not replicate an RDD or
persist it to disk and verified during the runs that no partitions
were recomputed due to failures. We run k-means on a dataset
from Seaflow [65], where each instance is a flow cytometry
sample of seawater containing characteristics of phytoplank-
ton cells. The dataset is 8.9GB and contains 123M instances.
The clustering task is to identify species of phytoplankton so
the populations may be counted.
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Figure 11: Scaling BFS out to 128 nodes. In addition to
GRAPPA’s GraphLab engine, we also show a custom algo-
rithm for BFS implemented natively which employs Beamer’s
bottom-up optimization to achieve even better performance.

The results are shown in Figure 10a for K = 10 and
K = 10000. We find GRAPPA-MapReduce to be nearly an or-
der of magnitude faster than the comparable Spark implemen-
tation. Absolute runtime for GRAPPA-MapReduce is 0.13s
per iteration for K = 10 and 17.3s per iteration for K = 10000,
compared to 1s and 170s respectively for Spark.

We examined profiles to understand this difference. We
see similar results as with Shark: the bulk of the difference
comes from the networking layer and from data serialization.
As K grows, this problem should be compute-bound: most
execution time is spent assigning points to clusters in the map
step. Figure 10b shows the time breakdown for GRAPPA-
MapReduce. At large K, GRAPPA-MapReduce is clearly
compute-bound. However, the equivalent profile for Spark
shows only 50% of the execution time in map; the rest of
the time is in the reduce step in network code. GRAPPA’s
efficient small message support and support for overlapping
communication and computation help it perform well here.
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Figure 10: Data parallel experiments using k-means on a
8.9GB Seaflow dataset.

into a local hash table, using GRAPPA’s partition-awareness.
The global-view model of GRAPPA allows iterations to be im-
plemented by the application programmer with a while loop.

4.3.1. Performance We pick k-means clustering as a test
workload; it exercises all-to-all communication and iteration.
To provide a reference point, we compare the performance to
the SparkKMeans implementation for Spark. Both versions
use the same algorithm: map the points, reduce the cluster
means, and broadcast local means. The Spark code caches the
input points in memory and does not persist partitions. Cur-
rently, our implementation of MapReduce is not fault-tolerant.
To ensure the comparison is fair, we made sure Spark did
not use fault-tolerance features: we used MEMORY_ONLY
storage level for RDDs, which does not replicate an RDD or
persist it to disk and verified during the runs that no partitions
were recomputed due to failures. We run k-means on a dataset
from Seaflow [65], where each instance is a flow cytometry
sample of seawater containing characteristics of phytoplank-
ton cells. The dataset is 8.9GB and contains 123M instances.
The clustering task is to identify species of phytoplankton so
the populations may be counted.
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Figure 11: Scaling BFS out to 128 nodes. In addition to
GRAPPA’s GraphLab engine, we also show a custom algo-
rithm for BFS implemented natively which employs Beamer’s
bottom-up optimization to achieve even better performance.

The results are shown in Figure 10a for K = 10 and
K = 10000. We find GRAPPA-MapReduce to be nearly an or-
der of magnitude faster than the comparable Spark implemen-
tation. Absolute runtime for GRAPPA-MapReduce is 0.13s
per iteration for K = 10 and 17.3s per iteration for K = 10000,
compared to 1s and 170s respectively for Spark.

We examined profiles to understand this difference. We
see similar results as with Shark: the bulk of the difference
comes from the networking layer and from data serialization.
As K grows, this problem should be compute-bound: most
execution time is spent assigning points to clusters in the map
step. Figure 10b shows the time breakdown for GRAPPA-
MapReduce. At large K, GRAPPA-MapReduce is clearly
compute-bound. However, the equivalent profile for Spark
shows only 50% of the execution time in map; the rest of
the time is in the reduce step in network code. GRAPPA’s
efficient small message support and support for overlapping
communication and computation help it perform well here.
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Global Heap

Local heap

"a"→7

"g"→2

Cell[2] Cell[5]Cell[3] Cell[4]Cell[1]Cell[0]

Node 0 Node 1 Node 2 ...
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"b"→1

"o"→1

"i"→5

"c"→3

"e"→1 "f"→2

"l"→1

// distributed input array
GlobalAddress<char> chars = load_input();

// distributed hash table:
using Cell = std::map<char,int>;
GlobalAddress<Cell> cells = global_alloc<Cell>(ncells);

forall(chars, nchars, [=](char& c) {
  // hash the char to determine destination
  size_t idx = hash(c) % ncells;
  delegate(&cells[idx], [=](Cell& cell)
  { // runs atomically
    if (cell.count(c) == 0) cell[c] = 1;
    else cell[c] += 1;
  });
});

hash("i")

Figure 1: “Character count” with a simple hash table implemented using GRAPPA’s distributed shared memory.
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Figure 2: GRAPPA design overview

Tasking system The tasking system supports lightweight
multithreading and global distributed work-stealing — tasks
can be stolen from any node in the system, which provides
automated load balancing. Concurrency is expressed through
cooperatively-scheduled user-level threads. Threads that per-
form long-latency operations (i.e., remote memory access)
automatically suspend while the operation is executing and
wake up when the operation completes.

Communication layer The main goal of our communication
layer is to aggregate small messages into large ones. This
process is invisible to the application programmer. Its in-
terface is based on active messages [69]. Since aggregation
and deaggregation of messages needs to be very efficient, we
perform the process in parallel and carefully use lock-free
synchronization operations. For portability, we use MPI [49]
as the underlying messaging library as well as for process
setup and tear down.

3.1. Distributed Shared Memory

Below we describe how GRAPPA implements a shared global
address space and the consistency model it offers.
3.1.1. Addressing Modes

Local memory addressing Applications written for
GRAPPA may address memory in two ways: locally and glob-
ally. Local memory is local to a single core within a node
in the system. Accesses occur through conventional point-
ers. Applications use local accesses for a number of things in

GRAPPA: the stack associated with a task, accesses to global
memory from the memory’s home core, and accesses to debug-
ging infrastructure local to each system node. Local pointers
cannot access memory on other cores, and are valid only on
their home core.

Global memory addressing GRAPPA allows any local data
on a core’s stacks or heap to be exported to the global address
space to be made accessible to other cores across the sys-
tem. This uses a traditional PGAS (partitioned global address
space [29]) addressing model, where each address is a tuple
of a rank in the job (or global process ID) and an address in
that process.

GRAPPA also supports symmetric allocations, which allo-
cates space for a copy (or proxy) of an object on every core
in the system. The behavior is identical to performing a lo-
cal allocation on all cores, but the local addresses of all the
allocations are guaranteed to be identical. Symmetric objects
are often treated as a proxy to a global object, holding local
copies of constant data, or allowing operations to be transpar-
ently buffered. A separate publication [40] explored how this
was used to implement GRAPPA’s synchronized global data
structures, including vector and hash map.

Putting it all together Figure 3 shows an example of how
global, local and symmetric heaps can all be used together
for a simple graph data structure. In this example, vertices
are allocated from the global heap, automatically distributing
them across nodes. Symmetric pointers are used to access
local objects which hold information about the graph, such
as the base pointer to the vertices, from any core without
communication. Finally, each vertex holds a vector of edges
allocated from their core’s local heap, which other cores can
access by going through the vertex.
3.1.2. Delegate Operations Access to GRAPPA’s distributed
shared memory is provided through delegate operations, which
are short operations performed at the memory location’s home
node. When the data access pattern has low locality, it is
more efficient to modify the data on its home core rather than
bringing a copy to the requesting core and returning a modified
version. Delegate operations [48, 52] provide this capability.

3

Grappa’s familiar multithreaded C++ programming model enables easier development of analysis tools for terabyte-
scale data. We provide sequential consistency for race-free programs using RPC-like atomic delegate operations, 
along with standard multithreading synchronization primitives. 

Here’s an example of building a distributed parallel  
word-count-like application with a simple hash table:

// distributed input array 
GlobalAddress<char> chars; 
 
// distributed hash table 
using Cell = map<char,int>; 
GlobalAddress<Cell> cells; 
 
forall(chars, nchars, [=](char c) { 
  // hash the char to determine destination 
  size_t idx = hash(c) % ncells; 
   
  delegate(cells+idx, [=](Cell& cell) 
  { // runs atomically 
    if (cell.count(c) == 0) cell[c] = 1; 
    else cell[c] += 1; 
  }); 
});
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Programming example

Selected publications
Latency Tolerant Distributed Shared Memory (USENIX ATC 2015)


A 10G NetFPGA Prototype for In-Network Aggregation (WARP 2015) 
	 Explores increasing small-message throughput by doing aggregation in network switches. 

Compiling Efficient Query Plans for Distributed Shared Memory (UW CSE tech report 2014) 
	 Explores distributed database implementation techniques that exploit PGAS and latency tolerance.


Alembic: Automatic Locality Extraction via Migration (OOPSLA 2014) 
	 Describes a compiler pass that automatically finds and extracts delegate operations from ordinary code.


Pomace: A Grappa for Non-Volatile Memory (NVMW 2013) 
	 Explores approaches for providing high random access rates with non-volatile memory.


Flat Combining Synchronized Global Data Structures (PGAS 2013) 
	 Distributed data structures that combine operations to reduce communication while remaining consistent. 


SP2Bench Query 2

Grappa’s current target is small, ~128 node clusters and 
does not yet implement fault tolerance. Work is ongoing.

Grappa C++11 (library-only)

char global* chars; 
Cell global* cells; 
forall(chars, nchars, [=](char c) { 
  Cell global& cell = cells[hash(c) % ncells]; 
  // compiler-inferred delegate: 
  if (cell.count(c) == 0) cell[c] = 1; 
  else cell[c] += 1; 
});

With Alembic C++ compiler

http://grappa.io
http://grappa.io

