Grappa: enabling next-generation analytics tools

via latency-tolerant distributed shared memory

Jacob Nelson, Brandon Myers, Brandon Holt, Vincent Lee, Daniel Halperin, Bill Howe, Preston Briggs, Luis Ceze, Simon Kahan, Mark Oskin
{nelson, bdmyers, bholt, viee2, dhalperi, billhowe, preston, luisceze, skahan, oskin}@cs.washington.edu
University of Washington

‘ ‘ More info, papers, code:
http://grappa.io

Grappa is a modern take on software distributed shared memory, tailored to
exploit parallelism inherent in data-intensive applications to overcome their poor
locality and input-dependent load distribution.

Grappa differs from traditional DSMs in three ways:

- Instead of minimizing per-operation latency for performance, Grappa
tolerates latency with concurrency (latency-sensitive apps need not apply!)

- Grappa moves computation to data instead of caching data at computation

- Grappa operates at byte granularity rather than page granularity

Latency tolerance has been applied successfully in hardware for nanosecond
latencies (e.g., superscalar processors and GPUs). This project explores the
application of this idea at distributed system scales with millisecond latencies.

MapReduce GraphLab

|

Il Memory Memory

|

S R R R I R B B
: B Cores @ | |M Cores®
(e E SEE8

Relational Irregular
Query apps, native
Engine code, etc...

Memory Memory
EEEE Ees
W Cores | | Cores
__sEE =88

Message aggregation layer

Thousands of threads per core to expose
parallelism and mask network latencies.

Infiniband network, user level access

|

o

Distributed Shared Memory

Lightweight Multithreading

& Global Task

Communication

||

Messages aggregated to mitigate
low network injection rates.

J

building up larger packets from unrelated tasks is essential for small-

Programmer sees global
memory abstraction.

||

~

Direct access to network
reduces software overhead.

Grappa’s current target is small, ~128 node clusters and
does not yet implement fault tolerance. Work is ongoing.

Key feature: Message Aggregation

Commodity networks have a limited message injection rate, so

K-Means computation with 64 nodes
on SeaFlow flow cytometry dataset
with two different k values, compared
with Spark using MEMORY_ONLY
fault tolerance

message throughput (fine-grained random access to global memory).

Pomace: A Grappa for Non-Volatile Memory (NVMW 2013)

Selected publications

Latency Tolerant Distributed Shared Memory (USENIX ATC 2015)

A 10G NetFPGA Prototype for In-Network Aggregation (WARP 2015)
Explores increasing small-message throughput by doing aggregation in network switches.

Compiling Efficient Query Plans for Distributed Shared Memory (UW CSE tech report 2014)
Explores distributed database implementation techniques that exploit PGAS and latency tolerance.

Alembic: Automatic Locality Extraction via Migration (OOPSLA 2014)
Describes a compiler pass that automatically finds and extracts delegate operations from ordinary code.

Explores approaches for providing high random access rates with non-volatile memory.

Flat Combining Synchronized Global Data Structures (PGAS 2013)
Distributed data structures that combine operations to reduce communication while remaining consistent.

Programming example

Grappa’s familiar multithreaded C++ programming model enables easier development of analysis tools for terabyte-
scale data. We provide sequential consistency for race-free programs using RPC-like atomic delegate operations,

along with standard multithreading synchronization primitives. Node 0 Node 1 Node 2
Here’s an example of building a distributed parallel + Global Heap
word-count-like application with a simple hash table: "a" | " "c" |"d" |"g" |"h"
Grappa C++11 (library-only) Cell0] Cell4] | Cells]
// distributed input array ‘ | : : \
GlobalAddress<char> chars; i At At AR Al SR A
Ilall _’7 llell - 1 llfll _’2
// distributed hash table o 1
using Cell = map<char,int>; 9
GlobalAddress<Cell> cells;
forall(chars, nchars, [=](char c¢) { Local heap

Pool

Layer

In-memory MapReduce

~150 lines of code, implemented with
forall loop over inputs followed by
forall over keys

// hash the char to determine destination
size_t 1dx = hash(c) % ncells;

With Alembic C++ compiler

char global* chars;

delegate(cells+idx, [=]1(Cell& cell)

{ // runs atomically
it (cell.count(c)
else celllc] += 1;

s
s

) celllc] = 1;

1)

Cell global* cells;

forall(chars, nchars, [=](char ¢) {
Cell global& cell = cells[hash(c) % ncells];
// compiler-inferred delegate:
if (cell.count(c
else celll[c] += 1;

) celllc] = 1;

Three prototype data analytics tools

GraphLab-like API

~60 lines of code, implementing:

- Synchronous engine with delta caching

- Random graph partition with no
replication

Benchmarks run on 31 nodes using 1.8B
edge Friendster social network graph
and 1.4B edge Twitter follower dataset,
compared with GraphLab using two
partitioning strategies

Backend for Raco
relational query compiler

~700 lines of code, translating physical
qguery plan into C++11 code using
Grappa forall loops

SP2Bench benchmark run on 16 nodes,
compared with Shark distributed query
engine

Node 0 Node n 10.0 - Friendster Twitter 40 -
_ — =
ﬁ @ © 4 - Q B Grappa
- . I o Qg -
. /' Core 0 :lé 3 75— 3 330] Shark
cO (g 3 (g
- - - Sg o =
© 5 5.0- 84" 3
2 ﬂl’ N 2 - N g -
Core 1 —> Core 1 c = g =
- | - T E 25- = £
O =) O 2- —
=09 £ 1- Q
. . ~ ()] \./10 _
: :)
Messages lists Sending core Buffer moved Receiving core Messages _ 0.0 7 - L E I I I I I I I I c
s distributes deserialized; | | 0 - 0 - =
aggregated serializes over network messages handlers run 10 10000 | | | | | | | | =
locally per core into buffer via MPI/RDMA ., © L cores on home cores K Pagerank CC SSSP BFS Pagerank CC SSSP BFS om e e e e e e e
' Applications | | | | | | | | |
Grappa Q3b Q3c Q1 Q3a Q9 Q5a Q5b Q2 Q4
3e+09 - g (MaEpReduce) Spark . Grappa GraphLab GraphLab Query
-8 PP (pds) (random)
S /
Q
)
D 26409 - L2+ GUPS Performance breakdown (or “why is Grappa faster?”)
%) O] (aggregated)
- — —_
QE) % (unaghregated . GUPS @ PageRank on Twitter 15 - 4 -
o) 'S = 800 - n Q
cE: 1e+09 - '§ 1 - S g:eaf%gghin S 600 - GranhL 3 Component
= ® € 600 - _ g = raphLab S S 3 B network
Cé ® GE) 2 Disabled £ 400 - (pas) A 107 & data serialization
)) ?, - Enabled O = (Grappa ~ © _ _
< 3] S 400 - S GEJ =24 iteration
0e+00 - o | | | 0- E = CTJ 200 - i— - c—g other overheads
1632 64 96 128 | | | = £200- =2 £, _ app compute
Nodes 16B 1kB 64kB gv § 0. — 51 . pp comp
Message size < 0 - & ! ! . .
RDMA ' ' ' ' = 0 20 40 60 0- H N 0- —— | SP2Bench Query 2
Grappa tomic GraphLab Spark Grappa Grappa Time (s) ! !

Experiments run at Pacific Northwest National Laboratory on PAL cluster
(1.9GHz AMD Interlagos processors, Mellanox ConnectX-2 InfiniBand network)

increment

Kernel-bypass communication with
cache-aware data placement.

High-concurrency program phases enable
aggregation and thus high message rates.

More efficient network layer,
lower serialization cost.

http://grappa.io
http://grappa.io

